Disclosure: J Newcorn (Past 12 Months)

<table>
<thead>
<tr>
<th>Source</th>
<th>Consultant</th>
<th>Advisory Board</th>
<th>Speaker (Disease State)</th>
<th>Research Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hippo T&C</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ironshore</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lumos</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medice</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MindTension</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFL</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OnDosis</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otsuka</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Supernus</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional research support provided by NIDA and NICHD
In the past 24 months, relationships with Adlon, Rhodes, Shire/Takeda, Corium, and Myriad have ended.
Educational Objective

Examine the efficacy, safety, formulation, and pharmacokinetics of new and novel drug delivery systems for ADHD management
ADHD Medications Worldwide

(approved and investigational)

Stimulants

Methylphenidate

<table>
<thead>
<tr>
<th>Short Acting</th>
<th>Intermediate</th>
<th>Long Acting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ritalin ‡</td>
<td>Ritalin SR ‡</td>
<td>Concerta ‡</td>
</tr>
<tr>
<td>Focalin *</td>
<td>Metadate ER ‡</td>
<td>Metadate CD ‡</td>
</tr>
<tr>
<td></td>
<td>Ritalin LA ‡; Focalin XR ‡</td>
<td>Daytrana (patch) ‡;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aptensio XR ‡; Adhansia XR ‡</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jornay PM ‡, Azstarys ‡</td>
</tr>
</tbody>
</table>

Amphetamine

<table>
<thead>
<tr>
<th>Short Acting</th>
<th>Intermediate</th>
<th>Long Acting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dextrostat †</td>
<td>Dextedrine</td>
<td>Adderall XR ‡</td>
</tr>
<tr>
<td>Spansule †</td>
<td>Adderall ‡</td>
<td>Vyvanse ‡</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(tablets/chewable)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adzenys (ODT) ‡</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dyanavel (liquid and tablet formulations) ‡</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mydayis ‡, Xelstrym ‡</td>
</tr>
</tbody>
</table>

Non-Stimulant

Approved

- Strattera †
- Qelbree ‡
- Intuniv ‡
- Kapvay *

Not Approved

- TCAs §
- Provigil **
- Wellbutrin, Zyban ††
- Tenex ‡
- Catapres ‡
- Effexor/Pristiq ‡
- Duloxetine/Rexebetine

Investigational Drugs

- Novel stimulant formulations (including tamper resistant)
- Centanafadine (Dasotraline)
- (Fasoracetam)
- (Mazindol)
- Misc. early phase

*N: Not all drugs and/or formulations available in all countries

**FDA approved in children/adolescents only

Emerging or relatively new to market:
- d,l-methylphenidate
- dextroamphetamine
- dextroamphetamine sulfate
- racemic amphetamine
- atomoxetine
- viloxazine ER
- tricyclic antidepressants (many brands)
- modafinil
- bupropion
- guanfacine
- clonidine
- venlafaxine

*Not all drugs and/or formulations available in all countries

**FDA approved in children/adolescents only
Rationale for New Medication Development in ADHD: Stimulants*

Stimulants are extremely effective, but:

○ Poor response or tolerability in some patients
 ■ Sub-optimal response is not uncommon, especially if AEs limit dose
 ■ Tolerability issues can limit higher dose treatment
 ■ Approval issues (insurance; pharmacy) can limit ability to prescribe higher doses

○ Time-action characteristics are problematic, even in responders

○ Relative or labeled contraindications for some comorbid conditions (e.g., tics, anxiety, substance abuse, ASD)

○ Some patients will not take stimulants; some doctors won’t prescribe them

○ Misuse, diversion and/or abuse of stimulants are more common and problematic than we would like to think (DEA schedule II drugs)

* Items in red text are addressed by investigational stimulant formulations
Ironshore Pharmaceuticals

Uniform, dual-layered microbeads with an inner drug-loaded core

Colonic absorption delays the initial release of drug by 8-10 hours

Onset of effect upon awakening that lasts into the evening

Dose: 20 – 100 mg

Side effects: Similar to other stimulants; no additional sleep or appetite problems
Delayed-release/extended-release MPH (Jornay PM): Pharmacokinetic (pK) Characteristics

Delayed-release/extended-release MPH (Jornay PM): Parent Rating of Evening and Morning Behavior (PREMB-R)* AM and PM

PREMB-R: 11-item clinician-rated scale based on a parent interview that assesses at-home functioning (i.e., behaviors that impact activities of daily living, such as getting up and out of bed, doing or completing homework, and falling asleep) during the early morning (PREMB-R AM – 3 items) and late afternoon/evening (PREMB-R PM – 8 items)

Dexmethylphenidate - Ser-dexmethylphenidate (Azstarys)

- Corium (developed by KemPharm)
- Ser-dexmethylphenidate is a prodrug of dexmethylphenidate
- 30% d-MPH and 70% S-d-MPH
- Rapid onset (30 minutes); extended duration
- Little to no likability for S-d-MPH
- **Dose:** 26.1/5.2 mg, 39.2/7.8 mg, 52.3/10.4 mg (equivalent to 20, 30 and 40 mg d-MPH-XR)
- Clinical trials began with the middle dose
- **Side effects:** Similar to other stimulants
Dexmethylphenidate - Ser-dexmethylphenidate (Azstarys): Drug Liking Following Oral Administration*

SDX Cl: serdexmethylphenidate chloride
d-MPH HCl: d-methylphenidate hydrochloride

Subjects responded to the question: “At this moment, my liking for the drug is?”: 0 = strong disliking, 50 = neither like nor dislike, and 100 = strong liking

† significantly higher vs placebo by >15 points (p<0.0001)
‡ significantly higher vs. SDX, 120 mg by >10 points (p<0.05)
§ significantly higher vs. SDX, 240 mg by >10 points (p=0.006)

*Human abuse potential studies were conducted with single-entity SDX only

Dexmethylphenidate - Ser-dexmethylphenidate (Azstarys): Drug Liking Following Intranasal and Intravenous Administration

Subjects responded to the question: “At this moment, my liking for the drug is?”: 0=strong disliking, 50=neither like nor dislike, and 100=strong liking

SDX Cl: serdexmethylphenidate chloride
d-MPH HCl: d-methylphenidate hydrochloride

Ser-d-MPH received a Schedule IV designation from the DEA

D-AMP Transdermal System (d-ATS) (d-AMP patch)

- **Noven Pharmaceuticals**
- **Absorption through the skin** – bypasses GI system
- **Dose**: 4.5 – 18 mg
- **Four patch strengths**: 4.5 (child starting dose), 9 (adult starting dose), 13.5, 18 mg
- **Onset of effects**: ~2 hours; offset: ~3+
- **Patch wear time**: 9 hours; duration 12+ in trial (variable wear time is possible)
- **Side effects**: Similar to other stimulants; also - rash at application site (alternate hips when placing the patch)
D-ATS Child and Adolescent Phase 2 Study: SKAMP Scores Over Time (Primary Outcome)

See source Figure 3 for original image: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8972004/
D-ATS Child and Adolescent Phase 2 Study: PERMP Scores Over Time (Secondary Outcome)

- Children 6-17 years (n=110; 106 completers)
- 2 week randomized, cross-over double blind treatment (1 week per condition)
- Outcome measures: SKAMP vs Placebo (primary); SKAMP duration; PERMP.
- SKAMP and PERMP significantly different than placebo
- SKAMP duration ~12 hours (back to 90% of baseline)

See source Figure 4 for original image: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8972004/
AMP- ER Tablets (Dyanavel-ER)

- **Tris Pharmaceuticals**
- **Racemic amphetamine, formulated to mimic Adderall XR**
- **Ratio: 3.2/1 (d-AMP/l-AMP)**
- **Tablet formulation based on and bioequivalent to Dyanavel suspension**
- **30 minute onset of action; extended duration of effects**
- **Dose: 2.5 – 20 mg daily (scored 5 mg tablets)**
- **Side effects: Similar to other stimulants**
Bioequivalence of AMPH – EROS and ER-MAS

Bioequivalence of AMPH – EROS and AMP-ER tablets

New Stimulants in Development: Alternative Delivery Options

<table>
<thead>
<tr>
<th>Compound</th>
<th>Company</th>
<th>Structure / Formulation</th>
<th>Indication</th>
<th>Stage of development</th>
<th>Mechanism of Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>KP484</td>
<td>KemPharm</td>
<td>d-MPH<sup>1</sup> ER<sup>2</sup> prodrug capsule serdexamethylphenidate</td>
<td>Adult ADHD<sup>3</sup></td>
<td>Phase I</td>
<td>NE<sup>4</sup>-DA<sup>5</sup> reuptake inhibitor</td>
</tr>
<tr>
<td>CTx-1301</td>
<td>Cingulate</td>
<td>Triple-release (IR & ER) formulation of d-MPH tablet</td>
<td>ADHD</td>
<td>Phase II (end)</td>
<td>NE-DA reuptake inhibitor</td>
</tr>
<tr>
<td>HLD-100</td>
<td>Ironshore Pharmaceuticals</td>
<td>Delayed release and ER capsule formulation of d-AMPH</td>
<td>ADHD</td>
<td>Phase II</td>
<td>NE-DA reuptake inhibitor, causes monoamine release from synaptosomes</td>
</tr>
<tr>
<td>CTx-1302</td>
<td>Cingulate</td>
<td>Triple-release IR & ER formulation of d-AMPH tablet</td>
<td>ADHD</td>
<td>Phase I</td>
<td>NE-DA reuptake inhibitor, causes monoamine release from synaptosomes</td>
</tr>
<tr>
<td>KP922</td>
<td>KemPharm</td>
<td>IR & ER AMPH prodrug</td>
<td>ADHD</td>
<td>Preclinical</td>
<td>NE-DA reuptake inhibitor, causes monoamine release from synaptosomes</td>
</tr>
<tr>
<td>TAH9901</td>
<td>TAHO</td>
<td>MPH transdermal patch</td>
<td>ADHD</td>
<td>Phase I</td>
<td>NE-DA reuptake inhibitor</td>
</tr>
</tbody>
</table>
New Stimulants in Development: Abuse Deterrent or Tamper Resistant Formulations

<table>
<thead>
<tr>
<th>Compound</th>
<th>Company</th>
<th>Structure / Formulation</th>
<th>Indication</th>
<th>Stage of development</th>
<th>Mechanism of Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORADUR - MPH ER</td>
<td>Durect</td>
<td>Abuse deterrent MPH ER capsule</td>
<td>ADHD</td>
<td>Approved in Taiwan only</td>
<td>NE-DA reuptake inhibitor</td>
</tr>
<tr>
<td>AR19</td>
<td>Arbor Pharmaceuticals</td>
<td>AMPH IR abuse-deterrent capsule</td>
<td>ADHD</td>
<td>Phase III (recently withdrawn)</td>
<td>NE-DA reuptake inhibitor, causes monoamine release from synaptosomes</td>
</tr>
<tr>
<td>ADAIR</td>
<td>Vallon Pharmaceuticals</td>
<td>APMH IR abuse deterrent capsule</td>
<td>ADHD</td>
<td>Phase I</td>
<td>NE-DA reuptake inhibitor, causes monoamine release from synaptosomes</td>
</tr>
<tr>
<td>PF8001 / PF8026</td>
<td>Ensysce Biosciences</td>
<td>IR and ER abuse resistant AMPH prodrugs</td>
<td>ADHD</td>
<td>Preclinical</td>
<td>NE-DA reuptake inhibitor, causes monoamine release from synaptosomes</td>
</tr>
<tr>
<td>AFI-0002</td>
<td>Altus Formulations</td>
<td>ER abuse deterrent stimulant--drug unknown</td>
<td>ADHD</td>
<td>Unknown</td>
<td>Drug not known</td>
</tr>
</tbody>
</table>
New Stimulants in Development: Combination Products

<table>
<thead>
<tr>
<th>Compound</th>
<th>Company</th>
<th>Structure / Formulation</th>
<th>Indication</th>
<th>Stage of development</th>
<th>Mechanism of Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATT-377</td>
<td>Attentive Therapeutics</td>
<td>MPH + cyproheptadine</td>
<td>ADHD</td>
<td>Phase II</td>
<td>NE-DA reuptake inhibitor + antihistamine</td>
</tr>
<tr>
<td>AVK-001</td>
<td>Avekshan</td>
<td>MPH + naltrexone</td>
<td>ADHD & substance use disorder</td>
<td>Unknown</td>
<td>NE-DA reuptake inhibitor + opioid antagonist</td>
</tr>
</tbody>
</table>
Rationale for New Medication Development in ADHD: Non-stimulants

- Current non-stimulants have substantial limitations
 - Smaller effect sizes than for
 - Large number of non-responders to atomoxetine (ATX)
 - Possibly true for alpha-2 agonists too, but no data
 - Alpha-2 (α_2) agonists are somewhat better for H/I than IA
 - Often used in combination with stimulants in children
 - Often not ideal for monotherapy in adults
 - Both non-stimulant classes are less effective in adults, and have limitations on their use
 - Alpha-2 agonists are not FDA-approved in adults
 - Both classes can take a fairly long time to show full effects
Opportunities for Non-Stimulant Treatment of ADHD

- Preferential response or tolerability in selected individuals
 - Presumably linked to novel MOA

- Improve temporal characteristics
 - Need for sustained activity across the full day and into the evening, without adversely affecting sleep

- Treatment of ADHD + comorbidity
 - Stimulants have relative labeled contraindications for anxiety, tic and substance use disorders
 - Non-stimulants are known to be effective for anxiety and tics, and should not make SUD worse (not contraindicated)
 - Opportunity to also treat ADHD + depression

- Combination treatment with stimulants could potentially improve response and/or lower the required stimulant dose
Fate of Recent Investigational Non-stimulant Drugs for ADHD

- **Several novel non-stimulants have not separated from placebo in Phase III (or later) trials**
 - Nicotinic agonists
 - H₃ antagonists or inverse agonist
 - Metadoxine – Pyridoxine + L-PGA – 5-HT₂B agonist/GABA modulator
 - Edivoxatine – Selective NE Reuptake inhibitor
 - Trintellix – SNRI; 5-HT₁A/₁B agonist
 - Ampakines – AMPA receptor (glutamate) modulators
 - Fascoracetam – Metabotropic glutamate agonist; also increases ACh and GABA
 - Molindone – Potent D2 and 5-HT2B antagonist

- **Several others failed due to side effects**
 - Long-acting modafinil (Sparlon), an atypical C4 stimulant with orexin agonist activity, was effective - but failed due to skin rash
 - Dasotraline- DA + NE reuptake inhibitor; Submitted to FDA in 2018 but not approved

- **Why have novel non-stimulants all failed?**
 - Complexities of negotiating Phase III
 - Increasing placebo response in trials; lower ES for non-stimulants
 - (?) Inadequate impact on catecholamine neurotransmission
Viloxazine (SPN 812)

- **Supernus Pharmaceuticals**
- **Mechanism**: Norepinephrine reuptake inhibitor and post-synaptic 5-HT agonist
- **Status**: Approved by FDA in November, 2020
- Re-purposed antidepressant; previously approved in UK/EU
- Strong CYP1A2 inhibitor; weak CY2D6 and CYP3A4 inhibitor
- **Dose**: Youth 100-400 mg; Adults 200-600 mg
- **Side effects**: (13-35%): somnolence, fatigue, headaches, decreased appetite and nausea
Viloxazine: Proposed Mechanism of Action in ADHD

Viloxazine: Pediatric Phase 3 Study

Viloxazine: Adult Phase 3 Study

- Adults 18 – 65 years old (n = 374)
- Flexible dose 200 – 600 mg (Mean dose: 504 mg)
- Significant group differences on: AISRS total and subscales, CGI-S and CGI-I, BRIEF-A GEC and Metacognition Index.
- Profile of responders and non-responders consistent with other non-stimulants
- Adverse events > 5% and significantly different from placebo: insomnia, fatigue, nausea, decreased appetite, dry mouth, headache, and constipation

Predicting Viloxazine ER Response at 6 Weeks from Response at Week 2 or 3

- Machine learning model conducted in pre-marketing studies of Viloxazine ER
- \(N = 1397 \) children/adolescents (ages 6-17)
- Variables used: ADHD-RS-5 Total score, age, body weight, and body mass index at baseline; CFB ADHD-RS-5 Total score at Week 1, cumulative change in ADHD-RS-5 Total score at Week 2, and cumulative change in ADHD-RS-5 Total score at Week 3; Clinical Global Impressions-Improvement (CGI-I) score at Week 1, 2, and 3; and target dose
- Best predictors: ADHD-RS-5 Total score and CGI-I
- PPP, sensitivity and specificity for ADHD-RS-5 Total score at 2 weeks were each ~75%

Selected Investigational Non-stimulant Drugs*

- **Centanafadine**
 - Repurposed anti-psychotic
 - Mechanism: triple reuptake inhibitor (SDN-RI) - ratio of 14:6:1 respectively
 - Status: Completed Phase III adult; Phase III child study nearly completed
 - Side Effects (18-24%): decreased appetite, headaches, nausea, diarrhea, rash (uncertain significance)

- **Sunosi**
 - Dopamine and norepinephrine reuptake inhibitor
 - Approved for treatment of excessive daytime sleepiness in association with narcolepsy and obstructive sleep apnea.
 - Mechanism through which it promotes alertness is not entirely known
 - Does not bind to dopamine, serotonin, norepinephrine, GABA, adenosine, histamine, orexin, benzodiazepines, or muscarinic and nicotinic receptors
 - Schedule IV designation from DEA
 - Positive results in Phase 2a; Phase 2b study is starting soon

- **Mazindol**
 - Atypical stimulant; triple reuptake inhibitor + orexin 2a partial agonist
 - Previously approved for appetite suppression; used off-label in narcolepsy
 - Large ES in Phase II (comparable to AMP), but with previous Schedule IV designation in US

*potential advantages indicated in italics
Emerging and Investigational Devices for ADHD

- **Monarch e-TNS (Trigeminal Nerve Stimulation) system**
 - Used in Europe/Canada for depression; cleared by FDA for ADHD (4/19)
 - Patch worn at night across the forehead delivers electrical signal to deep brain areas associated with concentration and impulse control

- **Video game technology** (1 product cleared by FDA; others being developed)
 - **AKL-T01 (Akili Interactive)**
 - Deploys interference-based cognitive control-targeting mechanics
 - Currently “cleared” by FDA – emergency approval; to distribute
 - **ATENTIVmynd (ATENTIV)**
 - Video game technology + QEEG measurement
 - Currently no published data

- **OYSTA Dosage Manager**
 - Holds and dispenses stimulant medication formulated as pellets
 - Pre-programmed to comply with medical prescription
 - Tamper resistant
 - Electronic dosing diary
Endeavor Rx (Akili): Video Game System for Pediatric ADHD

Monarch eTNS: Trigeminal Nerve Stimulation in Children with ADHD

See source Figure 1 for original image: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6481187/

ES of 0.5 at 4 weeks
Conclusions

- Currently approved medications for ADHD are highly effective, but there are still significant unmet needs
 - Time-action effects of stimulants remain problematic, and are a target for new formulations
 - Need for non-stimulant drugs with efficacy comparable to stimulants is a priority, but has been difficult to achieve
 - Safety/tolerability issues and poor adherence to existing treatments represent opportunities for new drug development

- New and emerging drugs and devices for ADHD address unmet needs and offer new therapeutic options
 - Stimulants: Jornay PM, Azstarys, Dyanavel tablet, Xelstrym
 - Non-stimulants: Viloxazine ER
 - Devices: Endeavor Rx; Monarch eTNS

- Several pipeline drugs/devices are in Phase III
 - Centanafadine
 - Several stimulant formulations
The Patient Perspective

Q&A with Keynote Dani Donovan
Audience Q&A
Posttest Survey